Carbon News
  • Members
    • Login
      Forgot Password?
    • Not a member? Subscribe
    • Forgot Password
      Back to Login
    • Not a member? Subscribe
  • Home
  • New Zealand
    • Politics
    • Energy
    • Agriculture
    • Carbon emissions
    • Transport
    • Forestry
    • Business
  • Markets
    • Analysis
    • NZ carbon price
  • International
    • Australia
    • United States
    • China
    • Europe
    • United Kingdom
    • Canada
    • Asia
    • Pacific
    • Antarctic/Arctic
    • Africa
    • South America
    • United Nations
  • News Direct
    • Media releases
    • Climate calendar
  • About Carbon News
    • Contact us
    • Advertising
    • Subscribe
    • Service
    • Policies

Clarity on elusive atmospheric 'detergent' reveals climate change realities

10 Feb 2025

Photo by Miguel A Amutio on Unsplash


Media release | The Earth’s atmosphere has strengthened its ability to remove air pollutants, including the potent climate-warming gas methane, according to new research published this month in Nature Communications.

Regarded as a breakthrough for climate science and the understanding of atmospheric chemistry, the study of the atmosphere’s self-cleansing ability focused on determining the quantity of its elusive driver, the hydroxyl radical (OH), dubbed the ‘detergent of the atmosphere’ by Nobel Prize winner Paul Crutzen.


By applying an advanced method to analyse two long-running measurements of air samples from New Zealand and Antarctica dating back to the late 1980s, the research by New Zealand’s National Institute of Water and Atmospheric Research (NIWA) revealed a significant trend in the atmosphere’s self-cleansing capability. The research highlights that without the increased cleaning capacity of hydroxyl, methane would have contributed even more to global warming.


The long-term study by NIWA scientists, together with researchers from Victoria University of Wellington, GNS Science, and a collaborator from Finland, reveals the atmosphere’s self-cleansing ability has been strengthening in the Southern Hemisphere since about 1997. The 33-year scientific investigation concentrated on the atmosphere’s strongest oxidant, OH, and identified radiocarbon monoxide (14CO) as a reliable tracer. The ultra-rare form of carbon monoxide is produced when cosmic rays hit the Earth’s atmosphere, with its production rate well understood, along with its removal by OH.


OH is highly reactive and very short-lived, says NIWA Atmospheric Scientist Sylvia Nichol.

 

“OH is a tiny chemical scavenger. Made up of one hydrogen and one oxygen atom, with a free unpaired electron, it is formed in the atmosphere when ultraviolet light from the sun strikes ozone in the presence of water vapour. It reacts with harmful trace gases including carbon monoxide and methane in the lowest layer of the atmosphere, the troposphere, which extends up to an average height of 11km (36,000 feet) from the earth’s surface. It was a major discovery in the 1970s that OH is produced in the troposphere by reactions to allow the oxidation of gases such as carbon monoxide, methane, and ethane. Even though OH’s lifetime may only be less than a second or so, it plays a vital role in cleansing the atmosphere.”

 

With the highly reactive hydroxyl controlling the atmospheric lifetime of most gases, the presence of OH is critical for controlling concentrations of some greenhouse gases, particularly methane, says Nichol.

 

“Even though the hydroxyl radicals appear in tiny quantities for a short time, they remove carbon monoxide and nearly 90% of methane in the air, so it is vital for maintaining air quality.”


The dynamic nature of OH, along with its very low concentrations, meant it is notoriously difficult to observe and accurately quantify directly, says NIWA Principal Technician Gordon Brailsford, who has spent decades collecting the air samples.

 

“Ultraviolet light influences hydroxyl production, so levels of this atmospheric cleaner have very large fluctuations on a daily and annual basis. OH is only formed during daylight hours, meaning it drops down to almost zero at nighttime, and is more prevalent in summer.”


Past attempts to monitor trends in OH have used methyl chloroform, but that has been phased out under the 1987 Montreal Protocol to protect the ozone layer, making it impractical to use, says Brailsford.

 

“Traditional methods and models predicting hydroxyl’s abundance based on methyl chloroform and other similar industrial gases also produced conflicting inferred estimates of changes in hydroxyl levels and its capacity to cleanse the atmosphere. So instead, we used naturally produced radiocarbon monoxide (14CO), a tracer whose production by cosmic rays we understand much better, enabling us to work out a trend in its removal rate by OH over a long period of time.”


Records from two remote Southern Hemisphere monitoring stations dating back to the late 1980s have yielded quality data for analysis, says Brailsford.

 

“Regular and consistent measurements spanning 33 years at two sites provide the first evidence for a long-term OH increase. The Baring Head Atmospheric Research Station outside New Zealand’s windy capital Wellington is internationally recognised for its long-term monitoring of clean air. Some 4,000km (2,500 mi) further south, the joint New Zealand – U.S. Arrival Heights laboratory on Antarctica’s Ross Island is far away from human contamination, with air samples being collected even during the five months each year of darkness. Both measurement series are by far the longest and most consistent records in the world for 14CO as a tracer for changes in atmospheric chemistry.”


Processing the samples requires many steps, says Principal Technician Rowena Moss, who has devoted more than 10,000 hours to the project.

 

“Large samples of air up to 1,000 litres, were collected in gas cylinders, then dried, compressed, cooled to remove ambient CO2, and concentrated down to a microscopic amount of carbon monoxide and its isotopes. These procedures are undertaken so samples can be sent for 14CO measurement by accelerator mass spectrometry at GNS Science’s radiocarbon-dating laboratory. Quality control is essential throughout these different steps to determine the original air sample 14CO concentration.”


The samples from the two different observation stations have proven insightful into the role of OH, says lead author for the journal paper, atmospheric and climate scientist Dr Olaf Morgenstern, whose work has extended an earlier developed ‘chemistry-climate’ model.

 

“New Zealand data since 1997 shows a 12% (± 2%) annual decrease in 14CO. Measurements from Antarctica show an even larger 43% (± 24%) drop but only during the December-January period, the height of the Southern Hemisphere summer. These research findings suggest that the atmosphere’s oxidizing capacity, driven by hydroxyl, has been strengthening over recent decades.The findings confirm and support our models and corroborate with those from around the world which suggest OH has been increasing globally.”

 

The researchers examined which processes and atmospheric compounds bring about changes in OH levels, identifying three main drivers of hydroxyl increase, and one driver dampening the increase of OH.

 

“Increasing hydroxyl trends are driven by nitrogen oxides primarily produced by motor vehicles, industrial combustion, lightning and wildfires. Hydroxyl is also affected by stratospheric ozone depletion, and water vapour, which is increasing under global warming, while OH has a significant offset due to methane, also increasing quickly, which acts to decrease hydroxyl. Knowing these four factors tells us what may lie ahead for OH, particularly that the increase could well turn into a decline due to changes in our activities.”

 

The increasing trend of OH found in this study implies there have been larger increases in the emission rates of methane than those estimated assuming constant OH, he says.

 

“Or put differently, methane would have contributed to global warming even more had it not been for this strengthening of atmospheric cleaning capacity. All four factors – nitrogen oxides, ozone, global warming, and methane – are exhibiting human-induced trends. Human activity is affecting the climate system's ability to strengthen its oxidizing power. These findings underline the significant role human activities play in shaping the climate system, affecting the capacity of hydroxyl to cleanse the atmosphere and maintain air quality."

 

The research was funded by New Zealand’s Ministry of Business, Innovation and Employment’s (MBIE) Strategic Science Investment Fund.

print this story


Related Topics:   Greenhouse Effect

More >
Media releases
More >

State of the Environment report: Auckland is improving in part but big challenges lie ahead

Today 10:30am

Media release: Auckland Council | Auckland’s environment is showing green shoots of recovery, yet many of our ecosystems are still in trouble.

The ozone hole continues to recover thanks to international action

Wed 17 Sep 2025

Media release: World Meteorological Organization (WMO) | The Earth’s protective ozone layer is healing and the ozone hole in 2024 was smaller than in recent years, according to a new report.

Solar and battery systems to boost resilience at Tasman community facilities

Tue 16 Sep 2025

Media release: Tasman District Council | Ten community facilities across Tasman District will soon be equipped with solar panels and battery storage, following confirmation of co-funding from the Energy Efficiency and Conservation Authority (EECA).

Patrick Moynahan, CEO of Echo Tech

Echo Tech secures growth investment to tackle NZ's e-waste crisis

Mon 15 Sep 2025

Media release | Echo Tech Limited, New Zealand’s leading provider of e-waste recycling and IT asset recovery services, is proud to announce a strategic investment from growth equity firm Altered Capital.

Award-winning American investigative climate journalist Amy Westervelt

New courses focus on climate action, activism and creating vision

Fri 12 Sep 2025

Media release | Dark Times Academy’s final lineup of courses for 2025, launching in mid-September, will focus on taking action on climate, learning about practical activism, and creating visions for the future.

Ara Ake backs 13 projects to unlock NZ’s energy flexibility

11 Sep 2025

Media release | Ara Ake has approved over $600,000 in funding from the National Flex Discovery Fund for 13 flexibility service providers (FSPs).

Review calls for streamlined standards to unlock distributed energy potential in Aotearoa New Zealand

10 Sep 2025

Media release – Electricity Engineers’ Association | A recent electricity industry report finds significant variability in technical standards across 29 electricity distributors, hindering integration of solar, batteries, and electric vehicles.

NPDC funds empowering community-led initiatives towards greener future

9 Sep 2025

Media release – New Plymouth District Council | If you have a project that aims to reduce emissions and waste or boost the number of native plants across the district, you could be eligible for funding through one of NPDC’s environmental funds.

New research reveals our passion and blind spots when it comes to nature

9 Sep 2025

Media release – Department of Conservation | New research reveals New Zealanders care deeply about nature and want to help but aren’t aware of the scale of challenges nature is up against.

Metlink’s AI generated impression of a hybrid train.

All Aboard: New electric trains for Lower North Island

8 Sep 2025

Media release - Minister of Transport | Government’s $802.9 million investment into the Wairarapa and Manawatū rail lines has now reached a major milestone, with Greater Wellington Regional Council today signing a contract for a new fleet of 18 battery electric multiple unit (BEMU) trains, Transport Minister Chris Bishop says.

Carbon News

Subscriptions, Advertising & General

[email protected]

Editorial

[email protected]

We welcome comments, news tips and suggestions - please also use this address to submit all media releases for News Direct).

Useful Links
Home About Carbon News Contact us Advertising Subscribe Service Policies
New Zealand
Politics Energy Agriculture Carbon emissions Transport Forestry Business
International
Australia United States China Europe United Kingdom Canada Asia Pacific Antarctic/Arctic Africa South America United Nations
Home
Markets
Analysis NZ carbon price
News Direct
Media releases Climate calendar

© 2008-2025 Carbon News. All Rights Reserved. • Your IP Address: 216.73.216.122 • User account: Sign In

Please wait...
Audit log: